Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(3): 646-655, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38217515

RESUMO

We study the influence of an applied electric field on the structure and stability of some common bimolecular clusters that are found in the atmosphere. These clusters play an important role in new particle formation (NPF). For low values of the electric field (i.e., |E| ≤ 0.01 V Å-1), we demonstrate that the field response of the clusters can be predicted from simply calculating the dipole moment of the cluster and the dipole moments of the constituent molecules and that the influence on the association energy of the cluster is minimal (i.e., <0.5 kcal mol-1). For higher field strengths |E| > 0.2 V Å-1, there can be more dramatic effects on both structure and energetics, as the induced dipole, charge transfer, and geometric distortion play a larger role. Although such large fields are not very relevant in the atmosphere, they do exist in some situations of experimental interest, such as near interfaces and in intense laser fields.

2.
J Am Chem Soc ; 145(14): 7780-7790, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995167

RESUMO

Dimeric accretion products have been observed both in atmospheric aerosol particles and in the gas phase. With their low volatilities, they are key contributors to the formation of new aerosol particles, acting as seeds for more volatile organic vapors to partition onto. Many particle-phase accretion products have been identified as esters. Various gas- and particle-phase formation pathways have been suggested for them, yet evidence remains inconclusive. In contrast, peroxide accretion products have been shown to form via gas-phase peroxy radical (RO2) cross reactions. Here, we show that these reactions can also be a major source of esters and other types of accretion products. We studied α-pinene ozonolysis using state-of-the-art chemical ionization mass spectrometry together with different isotopic labeling approaches and quantum chemical calculations, finding strong evidence for fast radical isomerization before accretion. Specifically, this isomerization seems to happen within the intermediate complex of two alkoxy (RO) radicals, which generally determines the branching of all RO2-RO2 reactions. Accretion products are formed when the radicals in the complex recombine. We found that RO with suitable structures can undergo extremely rapid C-C ß scissions before recombination, often resulting in ester products. We also found evidence of this previously overlooked RO2-RO2 reaction pathway forming alkyl accretion products and speculate that some earlier peroxide identifications may in fact be hemiacetals or ethers. Our findings help answer several outstanding questions on the sources of accretion products in organic aerosol and bridge our knowledge of the gas phase formation and particle phase detection of accretion products. As esters are inherently more stable than peroxides, this also impacts their further reactivity in the aerosol.

3.
Phys Chem Chem Phys ; 24(17): 10033-10043, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35415732

RESUMO

In this paper we study collisions between polyatomic radicals - an important process in fields ranging from biology to combustion. Energy transfer, formation of intermediate complexes and recombination reactions are treated, with applications to peroxy radicals in atmospheric chemistry. Multi-reference perturbation theory, supplemented by coupled-cluster calculations, describes the potential energy surfaces with high accuracy, including the interaction of singlet and triplet spin states during radical recombination. Our multi-reference molecular dynamics (MD) trajectories on methyl peroxy radicals confirm the reaction mechanism postulated in earlier studies. Specifically, they show that if suitable pre-reactive complexes are formed, they will rapidly lead to the formation and subsequent decomposition of tetroxide intermediates. However, generating multi-reference MD trajectories is exceedingly computationally demanding, and we cannot adequately sample the whole conformational space. To answer this challenge, we promote the use of a novel simplified semi-empirical MD methodology. It assumes the collision is governed by two states, a singlet (S0) and a triplet (T1) state. The method predicts differences between collisions on S0 and T1 surfaces, and qualitatively includes not only pre-reactive complex formation, but also recombination processes such as tetroxide formation. Finally, classical MD simulations using force-fields for non-reactive collisions are employed to generate thousands of collision trajectories, to verify that the semi-empirical method is sampling collisions adequately, and to carry out preliminary investigations of larger systems. For systems with low activation energies, the experimental rate coefficient is surprisingly well reproduced by simply multiplying the gas-kinetic collision rate by the simulated probability for long-lived complex formation.


Assuntos
Recombinação Genética , Transferência de Energia , Cinética , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...